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Abstract

Introduction:Adata-driven index of dementia risk based onmagnetic resonance imag-

ing (MRI), the Alzheimer’s Disease Pattern Similarity (AD-PS) score, was estimated for

participants in the Atherosclerosis Risk in Communities (ARIC) study.

Methods: AD-PS scores were generated for 839 cognitively non-impaired individuals

with a mean follow-up of 4.86 years. The scores and a hypothesis-driven volumetric

measure based on several brain regions susceptible to AD were compared as predic-

tors of incident cognitive impairment in different settings.

Results: Logistic regression analyses suggest the data-driven AD-PS scores to bemore

predictive of incident cognitive impairment than its counterpart. Both biomarkers

weremorepredictiveof incident cognitive impairment in participantswhowereWhite,

female, and apolipoprotein E gene (APOE) ε4 carriers. Random forest analyses includ-

ing predictors from different domains ranked the AD-PS scores as the most relevant

MRI predictor of cognitive impairment.

Conclusions: Overall, the AD-PS scores were the stronger MRI-derived predictors of

incident cognitive impairment in cognitively non-impaired individuals.
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1 INTRODUCTION

Despite intense research into novel biomarkers of dementia derived

from blood and positron emission tomography (PET) imaging,1,2

biomarkers from structural magnetic resonance imaging (MRI) remain

an area of great interest. MRI captures cumulative damage caused by

pathological processes over time3,4 and is (1) less expensive than PET

and less invasive than obtaining cerebrospinal fluid; (2) readily avail-

able in large legacy databases where other Alzheimer’s disease (AD)

biomarkers were not collected; (3) characterizes neurodegeneration

within the Amyloid/Tau/Neurodegeneration (A/T/N) model5; and (4)

can define severity and progression of brain disease.

The development of MRI-based biomarkers of dementia risk

remains an active area of research6–10 that continues to produce new

innovations. Some MRI biomarkers are guided by expert knowledge.

Racine and colleagues proposed the personalized AD cortical thick-

ness index.11 They used a composite measure estimated as the aver-

age cortical thickness of nine regions believed to be early targets of

AD to predict progression from mild cognitive impairment (MCI) to

dementia. Brickman and colleagues proposed a measure of degener-

ative and cerebrovascular pathology,12 which correlated with amy-

loid beta (Aβ) PET imaging and cerebrospinal fluid levels of total

tau, phosphorylated tau, and Aβ1-42 and predicted incident cognitive

impairment. Wu et al. investigated the value of different MRI mea-

sures as risk factors for incident MCI and AD13 in the Atherosclero-

sis Risk in Communities (or ARIC) cohort, reporting that both brain

tissue atrophy and vascular lesions contribute to dementia and cogni-

tive impairment in ARIC. These approaches have in common the use

of hypothesis-based composite measures that include several brain

regions susceptible to AD. Some composites are volumetric and others

are based on the cortical thickness average of the hypothesized brain

regions.

Several groups have proposed MRI data-driven biomarkers based

on machine learning methods.6,7,9 Very few have been systematically

deployed in the context of AD and related dementias. The Spatial

Pattern of Abnormality for Recognition of Early Alzheimer’s Disease

index is a better known example of a data-driven index of AD risk,

which has been applied to different problems in AD.7,14–16 We intro-

duced the Alzheimer’s Disease Pattern Similarity (AD-PS) scores using

high-dimensional machine learning methods.10,17–19 This work was

extended to the Women’s Health Initiative Memory Study (WHIMS)

MRI cohort,20 where AD-PS scores were associated with incident cog-

nitive impairment, age, and global cognitive function. Scores were con-

sistent with the relative trajectories of global cognitive function in

WHIMS women over 10 years of follow-up.21 WHIMS AD-PS scores

as ameasure of neuroanatomic risk of dementia have been linked to air

pollution.22,23

To date, there have been relatively few comparisons between data-

driven and hypothesis-driven MRI indices as predictors of incident

cognitive impairment, particularly in diverse cohorts. This work pur-

sues several objectives: (1) to extend AD-PS scores to the ARIC cohort

and evaluate their associations with incident cognitive impairment in a

diverse cohort of cognitively nonimpaired individuals; (2) to evaluate

HIGHLIGHTS

∙ A data-driven score was estimated via machine learning

for Atherosclerosis Risk in Communities (ARIC) partici-

pants.

∙ The training data set was composed of Alzheimer’s Dis-

ease Pattern Similarity (ADNI) magnetic resonance (MR)

images.

∙ The score was a strong predictor of cognitive impairment

in a diverse cohort.

∙ It outperformed an anatomically defined composite volu-

metric measure.

∙ The score outperformed other MRI measures when pre-

dicting cognitive impairment.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using traditional methods like PubMed. Although

the applications of machine learning to the analysis of

structural magnetic resonance imaging (MRI) are abun-

dant, comparisons of data-driven and hypothesis-driven

biomarkers as predictors of incident cognitive impair-

ment in diverse cohorts are rare.

2. Interpretation: Our analyses suggest that our machine

learning–generated data-driven score is more predic-

tive of incident cognitive impairment than a hypothesis-

driven composite volumetric measure, including the vol-

umes of several regions susceptible to Alzheimer’s dis-

ease (AD) in early stages. This work also suggests the

effectivenessof generalizationofneurodegenerationpat-

terns across imaging databases produced via machine

learning inference.

3. Future directions: Our work highlights the potential of

machine learning to generate AD biomarkers derived

from the data. We plan to continue this work by investi-

gating the use of more sophisticated methods from the

field of artificial intelligence, larger sample sizes of the

training data sets, and other types of information.

the relative merit of AD-PS scores compared to a hypothesis-driven

composite volumetric measure of several brain regions susceptible to

AD available in ARIC; and (3) to perform exploratory stratified analy-

ses across sex, race, and apolipoprotein E gene (APOE) ɛ4 carrier sta-

tus to evaluate the impact of these factors on the AD-PS scores and

the composite volumetric measure when predicting incident cognitive

impairment.
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2 MATERIALS AND METHODS

Two data sets were utilized for this study. ARIC is the main target

cohort and ADNI MRI data was used to train machine learning algo-

rithms to generate AD-PS scores when provided with MRI data from

ARIC participants.

The ADNI was launched in 2003 as a public-private partnership, led

by principal investigator Michael W. Weiner, MD, USA. The primary

goal of ADNI has been to test whether serial MRI, PET, other biolog-

ical markers, and clinical and neuropsychological assessment can be

combined to measure the progression of MCI and early AD. The ADNI

study provides a rich and well-characterized cohort of cognitively nor-

mal participants and AD patients, which we have used actively in our

previous work.24–26 The ADNI data are described in the Supplemental

materials.

The ARIC study began in 1987, funded by the National Heart,

Lung, and Blood Institute (NHLBI). From 1987 through 1989, a total

of 15,792 mostly White and African American participants aged 45-

64 years were recruited from four field centers located in Forsyth

County, NC, USA; Jackson, MS, USA; Minneapolis suburbs, MN, USA;

and Washington County, MD, USA. Using probability sampling, each

ARIC field center recruited 4000 individuals aged 45-64 years from a

defined population in their community. Only African Americans were

recruited in Jackson,MS,USA; the remaining sites reflected local popu-

lations, mostlyWhite inMinneapolis andWashington County and both

races in Forsyth County. The institutional review boards from all cen-

ters approved ARIC protocols; participants provided written consent

for their study participation and for use of their genetic data. To date,

there have been seven examinations; relevant to this work are visit 5

(2011 to 2013) and visit 6 (2016 to 2017).

3 ARIC DATA

3.1 ARIC-Cognitive evaluation

The ARIC cognitive assessment used in visits 5 was described

previously.27 Briefly, ARIC obtained cognitive evaluations at visits 5

and 6, with a mean follow-up of 4.86 years. The three cognitive instru-

ments administered beginning with ARIC visit 2 and used in visit 5

include: the DelayedWord Recall Task (DWRT), Digit Symbol Substitu-

tion (DSS) from theWechsler Adult Intelligence Scale -Revised (WAIS-

R), and a Word Fluency Test. Z scores for each test were estimated

using mean and standard deviations from visit 2. Factor scores were

used for global cognition, and for three previously derived cognitive

domain: executive function, language, andmemory.28–30

The cognitive status (non-impaired, MCI, or dementia) of partici-

pants who attended visits 5 and 6 was classified using a standard-

ized algorithm based on cognitive assessment and verified by expert

committee review, using information from in-person cognitive batter-

ies, the Clinical Dementia Rating scale, and functional questionnaires

completed by participants and/or informants. Because the goal of this

study is to evaluate early detection of dementia risk using imaging

biomarkers, only cognitively non-impaired individuals (CNI) at visit 5

were included in our analyses. Cognitively non-impaired was defined

as notmeeting criteria forMCI or dementia (Supplementarymaterials).

MCI type and the etiology of dementia were not adjudicated at visit 6.

3.2 ARIC-MRI

Structural brain images were obtained using 3-T MRI scanners

(Siemens Verio [Maryland site], Siemens Skyra [North Carolina study

center], Siemens Trio [Minnesota site], and Siemens Skyra [Mississippi

site]) as described previously.31 We used cortical volumes of regions of

interest, estimated using the FreeSurfer system (Laboratory for Com-

putational Neuroimaging) available in the ARIC database: frontal, tem-

poral, occipital, parietal, deep gray matter, ventricular, total brain vol-

ume (TBV), and a composite of brain regions volumes susceptible to

AD, including hippocampus, parahippocampal, entorhinal, inferior pari-

etal lobule, precuneus, and cuneus. This last measure has been ref-

erenced in previous work as “AD-signature.”13,32 Due to growing evi-

dence indicating these areas could be the target of other brain dis-

eases like limbic-predominant age-related TDP-43 encephalopathy,33

wewill use the term “composite volumetricmeasure of regions suscep-

tible toAD”or simply “composite volumetricmeasure (CVM).”Weused

white matter hyperintensity (WMH) volumes and volumes of several

brain regions (Table S2) as predictors in some of the analyses and the

intracranial volumes (ICV) to adjust for differences in brain sizes. MRI

scans from 839 ARIC CNI were available.

3.3 ARIC PET data

A subset of participants without dementia, ages 67-88 years, were

imaged using 18-florbetapir PET at three sites (Maryland; North Car-

olina; and Mississippi) during visit 5. The details of 18-florbetapir PET

imageprocessing andco-registrationwithMRI, carriedout at the Johns

Hopkins University reading center, were described previously34 and

can be found in the Supplementary materials. A global cortical mea-

sure of florbetapir uptake was used as a weighted average (based on

region of interest size) of the orbitofrontal, prefrontal, and superior

frontal cortices; the lateral temporal, parietal, and occipital lobes; and

the precuneus, the anterior cingulate, and the posterior cingulate. This

measure is called global cortical standardized uptake value ratio (GC

SUVR). We included in our analyses standardized upload value ratios

(SUVRs) from individual regions linked in prior studies to AD: medial

temporal, amygdala, hippocampus, anterior cingulate, posterior cingu-

late, caudate, putamen, and thalamus.29 An automated region for cere-

bellum gray matter was used as a reference. Here we used data from

193 participants whowere adjudicated as CNI on visit 5.

3.4 Estimation of the AD-PS scores

The general approach is depicted in Figure 1. MRI scans from both

ARIC andADNI (Table S1)were aligned to a common template (derived
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F IGURE 1 General approach to estimate Alzheimer’s disease pattern similarity (AD-PS) scores for ARICMRI images

from ADNI images) using image-processing tools available in the

Advanced Normalization Tools (see image processing in Supplemen-

tary materials). Next we used high-dimensional machine learning

methods to estimate the AD-PS scores. Details of themachine learning

algorithms were published previously.10,19,20,22 Briefly, a regularized

logistic regression (RLR) classifier was estimated in a voxel-wise man-

ner using the gray matter probability maps (resulting from the image

processing described above) from CN and AD participants available in

the training data set (ADNI in our case). The weights 𝛽 estimated after

solving the optimization problem associated with the RLR classifier

are used to estimate conditional probabilities of AD according to

the MRI scan. To estimate the optimal values of the regularization

parameters, we combined nested 10-fold cross-validations and grid

search. Probabilities we refer to as AD-PS scores were computed as

the mean values of five repetitions of the computations, to account for

variability due to randompartitioning of cross-validation that occurred

during model estimation. The scores are computed for the target data

set, in this case ARIC.

3.5 Analyses

We performed logistic regression analyses considering incident cog-

nitive impairment (either MCI or dementia) as the outcome and AD-

PS scores or the CVM described above as main independent variables,

fitted in separate models. Other variables included age, race-center,

sex, education, and ICV, where race-center combined information

from both race and study center. We estimated area under the curve

(AUC) based on 10-fold cross-validation. Similar analyses were per-

formed stratifying by sex, race and APOE ε4 carrier status. The Delong

method35 was used to evaluate significance of the increase in perfor-

mance resulting by adding eachbiomarker (AD-PSorCVM) to thebasic

model based only on covariates. We performed random forests (RF)36

classification analyses (see Supplementary materials for RF details) to

investigate relative importance of bothMRI biomarkers when predict-

ing incident cognitive impairment including AD-PS scores, the CVM,

several MRI variables derived using FreeSurfer (described above), cog-

nitive, clinical, demographics, and APOE ε4 data (Table S2). The derived
MRI variableswere scaledbydividing themby their corresponding ICV.

Similar logistic regression and RF analyses were performed using

a subset (N = 193) of CNI with MRI and amyloid PET data available.

This allowed us to compare performance of the anatomical measures

derived from MRI with measures derived from 18-florbetapir PET. RF

modelswere constructedusing the samepredictors as describedabove

but adding several Aβ amyloid PET measures to the model from brain

areas previously linked to AD (see the ARIC PET section above).

All RF analyses were performed using methods for imbalanced

classification available in the R package randomForestSRC.37,38 We

selected ntree = 3000 and AUC as the splitting rule, both of which

are recommended for imbalanced learning. Other parameterswere set

to the default values. The permutation index was used to determine

variable importance. The pROC R package was used to estimate AUCs

and confidence intervals as a measure of performance. For variable

selection we used a strategy proposed by Strobl for computing an RF

permutation index,39 who suggested discarding as noise the variables

with negative permutation index and the positive ones with absolute

values less than the amplitude of the negative score with maximum

amplitude.40,41
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TABLE 1 Demographic characteristics, APOE ɛ4 carrier status, andMRImeasures at visit 5 for CNI participants withMRI (N= 839) and for
those withMRI and amyloid PET (N= 193) by cognitive status at visit 6

Cognitive Status at Visit 6

Total Normal MCI Dementia

N 839 691 122 26

Agemean (SD) 75.3 (5.0) 74.9 (5.0) 76.5 (4.7) 79.4 (4.0)

Gender

Female 555 (66.2%) 435 (63.1%) 78 (63.9%) 21 (80.8%)

Male 316 (34.8%) 256 (36.9%) 44 (35.1%) 5 (19.2%)

Race

Black 272 (32.4%) 227 (32.9%) 31 (25.4%) 14 (53.9%)

White 567(67.6%) 464 (67.1%) 91 (74.6%) 12 (46.1%)

Education

Basic 98 (11.7%) 72 (10.4%) 20 (16.4%) 6 (23.1%)

Intermediate 306 (36.5%) 264 (38.2%) 34 (27.9%) 8 (30.8%)

Advanced 435 (51.8%) 355 (51.4%) 68 (55.7%) 12 (46.1%)

APOE ε4 carrier status

ɛ4 carrier (%) 224 (27.7%) 171 (24.8%) 45 (36.9%) 8 (30.8%)

AD-PS scores, mean (SD) 0.20 (20.3) 0.18 (0.18) 0.30 (0.25) 0.47 (0.33)

Composite volume, mean (SD) 59893.1 (6674.0) 60270.5 (6654.3) 58943.2 (6349.4) 54321 (5935.1)

MRI and amyloid PET Subset

Cognitive Status at Visit 6

Total Normal MCI Dementia

N 193 174 16 3

Agemean (SD) 75.0 (5.2) 74.8 (5.3) 76.6 (4.8) 79.3 (4.5)

Gender

Female 121 (62.7%) 109 (62.6%) 10 (62.5%) 2 (66.7%)

Male 72 (37.3%) 65 (37.4%) 6 (37.5%) 1 (33.3%)

Race

Black 78 (40.4%) 69 (39.7%) 6 (37.5%) 3 (100%)

White 115 (59.6%) 105 (63.3%) 10 (62.5%) 0 (0%)

Education*

Basic 23 (11.9%) 18 (10.3%) 4 (25%) 1 (33.4%)

Intermediate 83 (43.0%) 75 (43.1%) 8 (50%) 0 (0.0%)

Advanced 87 (45.1%) 81 (46.6%) 4 (25%) 2 (66.6%)

APOE ɛ4 carrier status

Yes (%)* 50 (25.9%) 41 (23.6%) 8 (50%) 1 (33.3%)

AD-PS scores, mean (SD) 0.19 (0.19) 0.18 (0.18) 0.37 (0.20) 0.39 (0.42)

AD-PS scores, mean (SD) 0.19 (0.19) 0.18 (0.18) 0.37 (0.20) 0.39 (0.42)

Composite volume, mean (SD) 59588 (6448) 59923 (6414) 57737 (5842) 50040 (1546)

Global cortical SUVR, mean (SD) 1.23 (0.20) 1.21 (0.17) 1.44 (0.31) 1.44 (0.35)

Abbreviations: GED, General Educational Development test.

*Education levels – Basic (<12 years), Intermediate (completed high school or GED*), Advanced (some college).

4 RESULTS

Age, race, education, APOE ε4 carrier status, CVM, and AD-PS scores

at visit 5 for 839 CNI withMRI are presented in Table 1, distributed by

cognitive status as adjudicated at visit 6. The average AD-PS scores of

CNI estimated at visit 5, increases with the severity of the future cog-

nitive impairment classification as adjudicated in visit 6.

In Table 2, results for the incident impairment analyses based on

logistic regression using the full sample (N = 839) and stratifications

by race, sex, and APOE ε4 carrier status are presented. Overall, AUC
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TABLE 2 The predictive value of the twoMRImeasures in CNI participants at visit 5 withMRI and for those withMRI and amyloid PET

Group Effect N Cases (*Dem.) AUC 95%CI **P

Full Sample AD-PS 839 148 (26) 0.692 [0.687-0.697] .0004

CVM 0.654 [0.650-0.658] .036

White AD-PS 567 103 (12) 0.688 [0.681-0.695] .006

CVM 0.672 [0.664-0.680] .10

Black AD-PS 272 45 (14) 0.645 [0.625-0.665] .10

CVM 0.596 [0.576-0.616] .08

Male AD-PS 305 49 (5) 0.661 [0.643-0.679] .08

CVM 0.615 [0.597-0.633] .17

Female AD-PS 534 99 (25) 0.685 [0.677-0.693] .003

CVM 0.645 [0.637-0.653] .21

APOE ɛ4 carriers AD-PS 224 53 (8) 0.744 [0.728-0.760] .06

CVM 0.692 [0.674-0.710] .37

APOE ɛ4Non-carriers AD-PS 615 95 (18) 0.668 [0.659-0.677] .002

CVM 0.617 [0.609-0.625] .07

MRI and amyloid PET Subset

Group Effect N Cases (Dem) AUC 95%CI **P

Full Sample AD-PS 193 19 (3) 0.737 [0.714-0.760] .024

CVM 0.633 [0.605-0.661] .19

GC SUVR 0.672 [0.633-0.711] .18

*Dem –Number of dementia cases.

**P-value - Delong test comparing AUCs produced by AD-PS or CVMplus covariates with respect to the basic model containing only covariates.

for incident cognitive impairment was 0.692 for AD-PS and 0.654 for

the CVM. Consistently, AD-PS scores were significantly more predic-

tive of incident cognitive impairment than the CVM (see also Table S3).

BothMRI-basedbiomarkersweremorepredictiveof incident cognitive

impairment in participants who were White, female, and APOE ε4 car-

riers. Spearman correlation between both measures was rho = −0.13

(P< .001).

For participants with both MRI and PET (N = 193), we present the

demographic information at visit 5 (Table 1) and logistic regression

results for the full sample (Table 2). The model including AD-PS scores,

generated the larger AUC when predicting incident cognitive impair-

ment. For completeness, the results across different stratifications of

the data set are presented in the Supplementary materials in Table S4,

although the sample size in several cases was small.

Figure 2 shows the rank of predictors based on the RF permuta-

tion index resulting from the incident cognitive impairment analysis

with 839 CNI at visit 5. The horizontal red line defines the thresh-

old for variable selection according to the Strobl criterion.39 AD-PS

scores were the most relevant predictor of incident cognitive impair-

ment followed by global cognition and memory domain scores, age,

CVM, WFT z-score, and ventricular volume. Performance of the clas-

sifier was AUC= 0.735 (95% confidence interval [CI] 0.692-0.780. The

results of the incident impairment analysis in the PET sample (N= 193)

are shown in Figure 3. Results were driven mostly by five predic-

tors: three from florbetapir PET(anterior cingulate, posterior cingulate,

and global cortical SUVRs) followed by two derived from MRI (AD-PS

scores and TBV). The classifier performance was AUC= 0.825 (95%CI

0.726-0.934). Several complementary analyses were performed. Lin-

ear regressionmodels were fitted to evaluate associations of bothMRI

biomarkers with memory and executive function scores. The AD-PS

scores were in all cases significantly associated with these cognitive

measures cross-sectionally and longitudinally, whereas the CVM was

not associated with memory function cross-sectionally and to execu-

tive function longitudinally (see Table S5). Logistic regression analyses

(amyloid+ vs amyloid−) adjusted for age, sex, education, race, and ICV

were fitted to investigate associations of bothMRImeasureswith amy-

loid PET in CNI, but results were not significant in either case (not pre-

sented).

5 DISCUSSION

The AD-PS score, a data-driven MRI biomarker of dementia risk, was

estimated for ARIC participants. ARIC is a diverse cohort containing

one of the largest MRI databases ever collected among African Ameri-

cans.Usingdata fromCNI,AD-PS scoreswere strongpredictors of inci-

dent cognitive impairment over 4.86 years of follow-up.

An important goal was to understand the relative merit of our

data-driven score with respect to a hypothesis-driven CVM based on

regions susceptible to AD. Areas contributing to the AD-PS scores
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F IGURE 3 Rank of predictors based on the RF permutation index resulting from the incident cognitive impairment analysis of 193 cognitively
non-impaired ARIC PET study participants at visit 5 adding toMRI, cognitive, clinical, and demographic data information derived from
Florbetapir-18 PET. The horizontal red line defines the threshold for variable selection. The AD-PS scores and total brain volume ranked as the two
most relevantMRImeasures after anterior cingulate, posterior cingulate and global cortical SURVs, whichwere the threemost relevant predictors
in this analysis. Performance of the classifier was AUC= 0.834 [0.735-0.932] CI (95%)

estimation are selected by the algorithm from the gray matter tissue

in a voxel-wise manner (see Figure S1 in Supplementary materials).

We investigated the relative value of these two MRI-based biomark-

ers for prediction of incident cognitive impairment using (1) parsimo-

nious logistic regression models and (2) high-dimensional RF models

that included other MRI, cognitive, demographic, genetic, and clini-

cal measures. Logistic regression analyses based on individuals with

MRI (N = 839) showed that models including the AD-PS scores were

very often significantly more predictive of incident cognitive impair-

ment than the CVM. In analyses stratified by race, sex, and APOE ɛ4,
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we observed that bothMRI metrics were simultaneously more predic-

tive of incident cognitive impairment in White, female, and APOE ɛ4
carriers. Complementary analyses were performed to further inves-

tigate relationships between AD-PS and CVM (see Table S3). When

both biomarkers were included in the same model, the CVM associa-

tions with incident cognitive impairment became nonsignificant in all

cases.

To investigate the relative performance of both MRI biomarkers in

thepresenceofmultiple variables fromdifferent domainsweusedRF, a

state-of-the-artmachine learningmethodwell known to the predictive

modeling community. The permutation index is perhaps the most pop-

ular variable importance measure it provides. It evaluates decreases

in model performance when a given variable is randomly permuted. If

the variable is important, themodel performancewill decrease andvice

versa. The RF analyses performed using MRI, cognitive, clinical, demo-

graphic, andAPOE ɛ4 carrier status predictors showed theAD-PS score
to be a more relevant predictor of incident cognitive impairment than

the CVM. Overall AD-PS scores were the most relevant predictor in

the model followed by global cognition and memory domain cognitive

scores, age, and ventricular volume. Complementary RF analyses drop-

ping one of the two measures (AD-PS or CVM) at a time from the full

model showed that only the removal of AD-PS scores led to significant

differences in model performance AUC = 0.717 (95% CI 0.672-0.763)

(P< .05).35

To investigate the performance of the AD-PS scores and the CVM

with respect to amyloid PET SUVRs, we took advantage of data col-

lected in the ARIC PET study.34 Similar analyses with CNI (N = 193)

were repeated. The results showed the anterior and posterior cingu-

late and global cortical SUVRs to be more relevant predictors of inci-

dent cognitive impairment followed by AD-PS scores. Intriguingly, the

otherMRI predictor that survived the threshold was TBV, a traditional

biomarker of brain tissue atrophy. This is possible due to differences

between the data sets (eg, sample sizes, % of cases, demographic dif-

ferences, and so on) and requires further confirmation.

The anterior and posterior cingulate cortex are part of the

default mode network,42 which has been linked to early changes

related to AD.43 Development of Aβ plaques in the anterior and

posterior cingulate in cognitively normal individuals has been

reported previously.44,45 Nadkarni and colleagues used the Amy-

loid/Tau/Neurodegeneration/Vascular framework5 to evaluate

associations of Aβ amyloid burden, white matter hyperintensities,

and fluorodeoxyglucose-PET with incident MCI in cognitively normal

individuals.46 They found that baselineAβ positivity alone or combined

hypo-metabolism positivity was associated with incident amnestic

MCI. Similarly, Burnham and colleagues, using data from 573 partic-

ipants in the Biomarker and Lifestyle (AIBL) study (mean age = 73

years), evaluated their clinical progression over 6 years of follow-up

based on Aβ PET and hippocampal volume.47 They reported that Aβ
burden was a risk factor for cognitive decline and progression from

preclinical to symptomatic stages of the disease, with neurodegenera-

tion acting as a compounding factor. Similar to other groups, we have

used SUVRs of several brain ROIs as predictors.48,49 However, a more

common practice is to use only a composite of different ROIs.

The increasing role of the less expensive plasma biomarkers2 raises

questions about the role of MRI biomarkers in the future. Accord-

ing to the ADRD research framework,5 Aβ, tau, and MRI biomarkers

reside in different domains (A, T, and N, respectively). MRI provides

valuable information related to neurodegeneration and cerebrovascu-

lar disease. In clinical practice, MRI biomarkers, like the AD-PS scores,

can provide complementary information about abnormalities in the

brain. In addition, prediction of future events is difficult in any field,

and prediction of future cognitive impairment is not an exception due

to the complexity of the processes that lead to it. Accurate prediction

of incident cognitive impairment will require complex models includ-

ing predictors from different sources. In the foreseeable future, MRI

will be an important component of the diagnostic process16 and MRI-

derivedbiomarkerswill contribute valuable information formathemat-

ical models designed to predict incident cognitive impairment.

Our study is not without limitations. The ADNI cohort is highly

selected and not representative of the general population. The major-

ity of participants used in the training data set are White (>90%), and

this must be considered when interpreting results across race. Ideally,

the training data set would bemore representative of the ARIC cohort.

However, this is the second database towhich AD-PS scores have been

extendedviamachine learning inference. In both caseswith verydiffer-

ent populations, the scores are predictive of incident cognitive impair-

ment.Webelieve that theAD-PS scoreswill benefit fromamuch larger

sample size of the training data set. Our comparison of the AD-PS

scoreswith respect to the compositemeasurewas restricted to thevol-

umetric version available in ARIC. However, other hypothesis-driven

volumetric composites or composites based on the average of cortical

thickness of several regions instead of volumes12 could be designed,

which could be more sensitive measures to future cognitive decline.

Our data set did not contain AD blood-based biomarkers such as p-

tau 181,2 so we were unable to evaluate their relative performance

with respect to AD-PS scores. The sample sizes of participants with

florbetapir PET who developed cognitive impairment were relatively

small, which could impact our analyses. Most African American partic-

ipants were from one site. Simulation studies have reported permuta-

tion index biases in some situations.50 However, we do not expect this

to affect the comparison between AD-PS scores and the CVM or the

model’s performance.

Finally, despite being based on a training data set (ADNI) with an

excellent clinical characterization of AD, AD-PS scores are most likely

capturing mixed pathology because AD often coexists or overlaps with

other brain diseases or due to classification not verified by biomark-

ers or confirmed at autopsy. Some researchers have suggested that

mixed pathology biomarkers have the potential to be better predic-

tor of future clinical outcomes relative to a biomarker of a specific

pathology.12,51

6 CONCLUSIONS

We estimated a data-driven MRI index of dementia risk we call AD-PS

scores in the ARIC study. Scores were predictive of incident cognitive
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impairment adjudicated≈4.86 years after theMRI datawere collected.

Overall, the data-driven AD-PS score outperformed the CVM. RF anal-

yses using variables derived from MRI, amyloid PET, cognitive testing,

genetic, and demographic data showed the AD-PS scores to be the

most relevant predictor of incident cognitive impairment among the

MRI variables but following several amyloid PET measures. Our work

supports the potential of data-driven biomarkers of dementia. Future

work will investigate early signs of dementia risk according to AD-PS

scores and define cut-off values for clinical diagnosis. More important,

we will refine our machine learning methodology by investigating the

use of very large training data sets, how to include imaging informa-

tion from large amounts of MCI individuals in model inference, inves-

tigate other outcomes to train the machine learning algorithms, the

use of Deep Learning and Manifold Learning methods, its applications

to other available imaging databases, and extensions or combinations

with other imagingmodalities.
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